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Summary. Hartree Fock theory was a major topic in Professor L6wdin's 
famous 1955 Physical Review papers. His development was based on fermion 
orbitals and the Slater determinant. Since that time there has been developed, 
at the University of Texas, the freeon, unitary-group formulation Of quan- 
tum chemistry as a viable alternative to the fermionic formulations of nonrela- 
tivistic quantum chemistry. We wish to express our appreciation to Professor 
L6wdin for his strong support of our freeon studies and for many helpful 
conversations. 
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1. Introduction 

Nonrelativistic quantum chemistry is conventionally formulated in either the 
Slater determinant or the second-quantized formulations [1-10]. Both formula- 
tions employ the spin orbital, even though the Hamiltonian is independent of 
spin. This redundancy led the Texas group in the early 60s to formulate the 
freeon symmetric group formulation (FSGF) [11, 12] based on the symmetric 
group, SN where N is the number of electrons. A decade later we reformulated 
the problem as the freeon, unitary-group formulation (FUGF) [13, 14}based on 
the unitary group U(M), where M is the number of freeon orbitals. More 
recently we have applied FUGF to the nucleus where the freeon orbital is 
independent of the isospin orbital, and to baryons where the freeon orbital is 
independent of the color orbital. 

FUGF has a number of useful features: 

i) It exposes the basic dynamics of the problem which are hidden in a fermion 
formulation. 

ii) It does not require spin projection. 

iii) It focuses de novo on the orbital rather than the particle. In fact, particle 
indices do not appear in FUGF. 
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iv) It provides a facile evaluation of matrix elements. 

v) It employs a simple operator algebra which is ideally suited to the develop- 
ment of Hartree-Fock,  superoperator and other theories. 

Section 2 contains a brief introduction to the symmetric group, its Frobenius 
algebra, the partition-labeling of freeon N-electron states and FSGF. Section 3 
contains a brief introduction to the unitary group and its Lie algebra and F U G F  
and Sect. 4 contains the freeon theory. Section 5 contains the F U G F  of 
Hart ree-Fock theory for closed-shell and open-shell reference states. Note that 
since the theory is a freeon theory the resulting theory is the restricted Hartree-  
Fock theory (RHF). We illustrate this theory by means of the Hfickel-Hubbard 
Hamiltonian, which contains as a variable parameter: 

- 1 <<. x =- U / ( t  + I u[) ~ 1 (1) 

where U is the repulsion energy of two electrons on a single site and t is the 
hopping integral (Hfickel/~) representing the covalent bonding between two sites. 

2. The symmetric group and its Frobenius algebra 

2.1 Introduction 

The symmetric group, SN, plays a major role in the theory of systems containing 
N identical particles. The group and its (Frobenius) algebra are introduced in 
Sect. 2.2. In Sect. 2.3 we construct its irreducible spaces from spaces which are 
invariant under SN and its algebra. In Sect. 2.4 we discuss the permutational 
symmetry of the Hamiltonian of a system of N identical particles. In Sect. 2.5 the 
tensor product space is introduced as an approximation to the full Hilbert space 
of the N-particle Schr6dinger Hamiltonian, which is then decomposed into 
Su-irreducible spaces. In Sect. 2.6 we compute the matrix representation of the 
Hamiltonian in the Su-irreducible spaces. 

2.2 The group and its Frobenius algebra 

The symmetric group [12] is denoted: 

Su = {Pi, i = 1 to N!} (2) 

where N is a positive integer. It has a simple rule of multiplication: 
2 

l ' i t ' j  = (3)  

where g~ = 0 or 1. The Frobenius algebra of SN is an operator vector space 
denoted: 

FA(SN) : {Pi, i = 1 to U!} (4) 

An equivalent basis is the Wigner basis: 

FA(SN) " {e~ 1, r, s = 1 to f[2], [2] ranging} (5) 

where 
N~ 

--P rsD~] = ( f  [2]/N) ~ L--, Fp :-1 jsrlEX~ --,P (6) 
i = 1  
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and [Pi- 1] [s2r] is the element of the s th row, r th column in the matrix representing 
p -1  in the irreducible rrepresentation labeled by [2]: 

[2]=[21,...2 k . . . .  2M] , 211>2k/> ' ' '~>0 (7) 

with the constraint: 
M 

~, 2k = U  (8) 
k = l  

is a partition of N. A partition is graphically represented by a Young diagram, 
YD[2], an array of N squares with 2; squares in the i t~ row. 

We denote the dimension of the [2]th irreducible representation denoted by 
f[2] and computed by: 

N! 
f[21 - - -  (9) 

I-[ hD[2] 

where 1~ hD[2] is the product of integers in the hook diagram for the selected 
Young diagram: 

and where [ ]  is a hook length, the number of squares traversed by an arrow 
drawn from the right through the i th r o w  and hooking down the j t h  column. For 
N = 3 we have three partitions and three irreducible spaces. See Table 1. 

The Wigner elements of the SN-Frobenius algebra multiply according to: 

t~ a [ 'q -rs" t~l-,u" E~'~ = ~([21, [2 '])~(s, -,-ru (10) 

The Frobenius contains a subalgebra, the centrum whose elements commute with 
every element in the full algebra. The centrum is spanned by projectors: 

FA(SN)c{e E;̀I} (11) 

Table 1. The dimensions of the SN-irreducible 
representations for N = 3 

i[M 'm[M fix] 

[13 ] 

[2.1] 

[3] . . . . . . . .  

6•= 6/6 =1 

6 ~  = 6/3 = 2 

6 ~  = 6/6 = 1 
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where 

so that  

and 

f[~] 

e [z] = ~ e-['~]rr (12 )  
r = l  

e l% w] = 6([2], [2'])e tzl (13) 

[P, e [~]] = 0, for  every P and e t~] (14) 

The  identity pe rmuta t ion  is the sum o f  the projectors  ( the resolut ion of  the 
identity): 

l =  ~ e ~1 ( 1 5 )  
[41 

2.3 The irreducible representation spaces 

We take ~U as a space which is invar iant  under  SN; i.e., 

P~// - -  ~ (16) 

An impor tan t  example  of  a space ~ with this p roper ty  is the tensor  p roduc t  
space o f  Sect. 2.5. By the resolution o f  the identity we can decompose  ~ as 
follows: 

"U = I " U  

where 

= y '  e[~],K" 
[-q 

= ~ ~/p [~] (17) 
[.q 

~/.-[,t] = e[,t]~K, (18) 

is an irreducible representation space of  $u" Note  that  it is invar iant  under  $U; 
i.e.: 

P"U [4] = Pe [;°>//~ 

= e[~]p~u 

= e [ ~ ] ~  

= ~ [~] (19 )  

~[; '] is in turn decomposed  into componen t s  i.e.: 
f[2]  

e [zl = ~ e[~ ] (20) 
r = l  

Hence 
f [2] 

err ~/" Y/['q = E 141 
r = l  

f [d.] 
= Z q/~] (21) 

r = l  
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where 
~U ~1 = e [,~1 ~ (22) 

Since V is a representation space of SN we have: 

[r 2] = ~rl" [2] r q / "  [2]1 ( 23 ) 

More specifically let 112] l i )  be the i th orthonormal basis vector in V~ ~1. Then: 

] [£]ri) = "[al I~rl i[ 2] l i )  (24) 

and for P s SN : 
([,qrilel[,~']r'i') = 6;,i,6)o,a.[P] ~] (25) 

2.4 The N-particle Hamiltonian 

For a system containing N identical particles, there exists a N-particle, 
Schr6dinger Hamiltonian, Hs such that: 

[Hs, P]=O, P e S N  (26) 

where P is an element of SN which permutes the indices on the N identical 
particles. It follows that the Hilbert space, Ve, of H is a representation space of 
SN; i.e.: 

P~//'H = ~U/~ (27) 

which, as shown in Sect. 2.3, "U can be decomposed into a direct sum of 
irreducible spaces, 

f [2] 

y" = ~  ~ ~//"!~1 (28) 
[2] r = 1 

The matrix elements of H on ~ are given by: 

<~!~1 iHslv~'~> = <~le~)Hse~]~lv > 
( V  ~r ,,t~l,,t~'l f ->  

~tJt S~" l r t ' r  1 

= a([2], [,~'])&(r,r') ( ~  I Hse~12l~ ) 
= &([2], [,V])a(r,r') ( ~  IHse~11e~l[~) 
= 6([2], [2'])6(r,r') (~//~ leq~JHse[~l ~ ) 
= 5([21, [2'])6(r,r') (~K" I H, I 

It follows that representation of Hs on the Hilbert space is factored into blocks, 
which in turn are further factored into f[2] separate degenerate blocks, each 
labeled by [2] and the degeneracy index r, so that [2] and r are the SN quantum 
numbers. 

2.5 The tensor product space 

Since the exact Hilbert space of the N-particle Hamiltonian is unknown, we 
approximate it by a n  N th tensor-product space constructed from an M dimen- 
sional one-particle (orbital) space: 

~M: (115, 125 . . . .  IM)} (30) 
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T h e  N th rank tensor-product space is denoted: 

~M(N) : {JR(N)) = ]R1 )]R2)IR3)'"[RN), dim = M N} (31) 

Each R(N) characterized by a configuration (weight) denoted by: 

{ W )  = {W1, W 2 , . . .  , WM} (32) 
where Wl, w2 . . . .  , wM are the occupation numbers of ] 1), 1 2 ) , . . . ,  [M) in R(N) 
and where: 

M 

Z wR = N (33) 
R = I  

~Ac(N) is invariant under SN SO that it can be decomposed into invariant 
spaces as described in Sect. 2.2: 

~/FM]2] : (][2]{w}t)t = 1 to f~¢[2]) 

where t distinguishes among configuration states with the same [2] and {w). The 
eigenvectors and eigenvalues are obtained by diagonalizing I-Is in the several 
physical irreducible spaces and constitute a prediction of the spectrum. 

3. The unitary group formulation 

3.1 Introduction 

In this section we replace Hs acting on ~M (M) by the equivalent unitary group 
Hamilton, Hu  and compute its representation in the irreducible spaces of U(M). 
The U(M) quantum number is a partition of N, just as for SN. In Sect. 3.2 we 
give a brief review of the theory of the unitary group and its Lie algebra; in Sect. 
3.3 we construct Hu. 

3.2 The unitary group; its Lie and its covering algebras 

The unitary group [15, 16, 17, 14], denoted: 

U(M) = {u(~), where ~ is a complex skew-Hermitian matrix 
parameterizing the group} 

is the group isomorphic to the set of unitary transformations on an M-dimen- 
sional vector space. Its Lie algebra is denoted: 

LAU(M) :{ERs, R, S = 1 to M)} 

with Lie products: 

[ERs, ETry] = a(S, T)ERu - 6(R, U)ETs (34) 

The group elements are related to the Lie algebra elements via exponentiation. A 
general element of U(M) may be written as: 

u(00 = eZ(~) 

where Z(~) is a skew-Hermitian element, i.e.: 

Z(~)* = - z ( ~ )  
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hence 

and specifically: 

u(~)*=u(~) -1 

M M 

Z(Z) = ~ ~ eRsERs where C~Rs = - e * R  (35) 
R = I S = I  

Often a real parameterization of the group elements is useful, in that case we can 
take: 

M i M R--1  

z (z ,  r) = i E r RER  + £ E rRs(eRs + 
R = I  ~ / ~  R =  1 S = l  

i M R--1  

+ - ~  ~ ~ XRs(ERs--EsR) (36) 
~/ZR= I S = I  

where the parameters XRs and YRS are real. Note that eRs = (XRs + iYRs)/x/2 
for R > S .  

The covering algebra of U(M) covers the operator space of  the full unitary 
group and is spanned by the identity and all products of the generators; i.e.: 

CAU(M) : {L ERs, ERsErv . . . .  } (37) 

The group elements e z are a subset of CAU(M). The centrum of CAU(M) is also 
a subset of  CAU(M) and is denoted: 

CEU(M): {CxK = 1 to M} (38) 

where Cx is a Casimir opertor, a K th order polynomial in the generators such 
that: 

[Cx, ERs] = 0 (39) 

For  example, the linear and quadratic Casimir operators are respectively: 

M 

c1 = E ERR (40) 
R = I  

and 

M M 

C2 = ~ ~ ERsEsR (41) 
R = I S = I  

The tensor product space, ~YM(N) is invariant under U(M) when we express 
its generators in terms of  M 2 orbital ketbras; e.g.: 

N 

ERs = E [Rj}(Sjl (42) 
j = l  

The group elements represent an orbital transformation on the tensor 
product space. The enveloping algebra represents the set of  excitations and 
de-excitations. The most general unitary orbital transformation on this space is 
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given by Eq. (35) or equivalently Eq. (36). To demonstrate this we note: 
M M 

z = E  EzRse   
R = I S = I  

M M N 

= Z 2 2 z..IR, 5(s,I 
R = I S = l j = I  

N M M 
= 2 Z 2 ZRsIRj ) (SJ l  (43) 

j=IR- -1S=I  

Employing [IR, > < Si I, I Tj > < Sj l] = 0 for i ¢ j we have: 

eZ=j~=l.= exp R=IS=12 Z ,  sl R])(Sj (44) 

hence, each individual electron is transformed by the same unitary transforma- 
tion. In other words, the unitary group elements represent the set of all possible 
unitary orbital transformations. 

3.3 The irreducible spaces of U(M) 

The irreducible spaces, denoted 3v -r, of U(M) are by Schur's lemma spaces which 
are diagonal for the mutually-commuting Casimir operators and are uniquely 
labeled by the eigenvalues of the Casimir operators: 

F = { C r K =  1 to M} (45) 

For a basis of Vr we choose vectors which are diagonal in the Cartan subalgebra 
{ERR :R = 1 to M}, the set of mutually-commuting, diagonal generators. The 
eigenvectors, called weight vectors, are denoted I F[w]t) where: 

[ w ]  = W l ,  w 2 ,  • • • ,  w ~ ]  

is called the weight. That is: 

ERR I r[w]t) = w R Irtwlt ) (46) 

and 

CxlF[w]t ) = Cr lF[w]t ) (47) 

where t distinguishes among weight vectors with the same weight. 
The application of an off-diagonal generator ERsR ¢ S, to a weight vector 

generates a new weight vector with a weight different from the weight of the 
original vector by integers. The highest-weight vector is a vector whose weight is 
such that: 

w r = [wr], wf ~> w r >/" '"  >/w r ~>0 (48) 

and has property: 

ERs IF[w]) = 0 for R < S (49) 

The highest weight vector is unique and so provides a label for the irreducible 
space V r. For the tensor product basis of Sect. 2.5 with the choice of ERs 
employed in Sect. 3.2 we have 

r = [w r] = [2] (5O) 



Freeon unitary group formulation of Hartree-Fock theory 189 

and 
M 

Cr=N= Z wR 
R = I  

The partition [2] acts as a label of both Su and U(M). 

(51) 

3.4 The dimension of "~/'M[2] 

The dimension fM [4] of ~M[2] is given by the construction based on the Young 
diagram, YD[2]: 

1~ nD[2] 
f g  [4] - -  - -  

HhD[2] 
(52) 

Here, [IMD[2] is the product of the integers in the M-diagram, MD[2]: 

M M + I  

M-1 M 

M-2 M-1 

M-3 ... 
( 5 3 )  

and l~hD[2] is the product of integers in the hook diagram discussed in Sect. 2. 
See Table 2. 

3.5 The Gel'fand states and diagrams 

The invariant spaces, ~M [2] of U(M) are spanned by Gel'fand states which are 
weight-states, symmetry-adapted to the chain: 

U(M) ~ U(M-  1) = . . .  U(1) (54) 

These states are labeled by Gel'fand diagrams constructed by adding the orbital 

Table 2. The dimensions, fM[2] of the irreducible spaces for 
N = M = 3  

![~.[ 

[13] 

[2,1] 

i[3] 

"~D[X] ff~.] 

r - l - [ - i  I -~ i~ - l~ i ;~ -T-~- I  = 60/6 = 10 
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symbols in nondecreasing order along rows and increasing order down columns. 
As an example of M = 3 we denote the orbital space by: 

~3: {[a), [b), [c)} (55) 

with orbital-labeling given by; i.e.: 

a < b < c (56) 

See Table 3. 
In the freeon formulation Sect. 4 the space "U313] is Pauli forbidden. How- 

ever, in elementary particle theory the freeon orbitals ]a), Ib) and [c) are 
replaced by the flavor orbitals, lu) (up), Id) (down) and Is) strange, respec- 
tively. The, ~313] represents the baryon decuplet and %[2, 1] represents the 
baryon octet. 

3.6 The construction of Gel'fand states 

3.6.1 Introduction. To compute the matrix elements of the generators over the 
Gel'fand states we require an explicit algebraic construction of these states. In 
Sect. 3.6.2 we introduce an intermediate basis, the generator basis [18], formed by 
the application of weight-lowering generators to the unique highest-weight state. 
The generator basis is overcomplete and nonorthonormal. In Sect. 3.6.3 we give 
an example of the construction of the orthonormal Gel'fand states from genera- 
tor states by the Moshinsky-Nagel procedure [19]. 

3.6.2 The generator basis. The generator basis [18] of VM[2] is composed of 
vectors generated by applying weight-lowering generators to the highest weight, 
state which is denoted 10); e.g.: 

I if) = [SR, UT , . . . )  = EsleEvT.. .  10} (57) 

Generator states with different weights are orthogonal since: 

leR  = wR = ( 5 8 )  

Hence, {~ [f~') = 0 for {w'} ¢ {w'}. 

Table 3. Gel'fand diagrams for N = M = 3 

~V3[13]; { } 

V313]: { [ '~ '~ ' ] ,  [ ' ~ ] - ' ~ ,  ~ [ ' ~ - ' ~ ,  [ ' ~ - e ] ,  [ ~ ' ~ ] ,  [ - ~ - ' ~ ,  

F 
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The simplest complete set of generator states for V312, 1] and 
V3 "{]a), ]b), ]c)} are listed below: 

V3[2,1]:{]O>=~-~,]ba),[ca),]cb),]baca),]bacb),[caca),]cacb)} (59) 

The normalization of generator states is carried out by means of the Lie products 
of the generators. For example: 

(calca)=(OlEocEcalO) 

= (Ol(Ecaea~ + E a a  - -  E~)[0) 

= ( 0 l ( 0  + 2 - 0)10 ) = 2 (60)  

since [0) contains a two times and c zero times. So: 

lac ) = lac) /.,/2 (61) 

Similarly: 
(bacb [bacb) = 1 (62) 

Note that these two equal-weight states are not orthogonal; e.g.: 

(ca I bacb) = - 1 (63) 

3.6.3 The Moshinsky-Nagel construction. The Moshinsky-Nagel [19] construc- 
tion is based on weight-lowering polynomials, denoted G such that a Gel'fand 
state is given by: 

Ia> -- NGal0> 
= S, eCG,~ If¢) (64) 

where the coefficients Ga,e are determined by the Moshinsky-Nagel construction. 
The inverse transformation is given by: 

1~> =Noalo> 
= SGIG>(G I ~) (65) 

The Moshinsky-Nagel construction has been computer-programmed by the 
authors. In addition, quite efficient bases [20-24] and construction methods exist 
for two column Gel'fand states. In Table 4 we list the Gel'fand states expressed 
as generator states for M - - N  = 3. 

3.6.4 Freeon tensor product states. The direct product of two single column 
LAU(#) Gel'fand bases forms a representation space of LAU(#). The direct 
product states we denote as freeon tensor product states (FTP states) [24]. These 
states are the same as the Clifford algebra states of Paldus and coworkers [21, 22]. 

Since FTP states are the tensor product of two orthonormal states the FTP 
states are orthonormal. For example: 

0 0  o 
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Table 4. Gel'fand states for V312, 1] 

= Icb) 

l ~ ]  = Iba) 

~ ] =  Ibacb)/'~2 

] ~ = (21ca) + Ibacb)/~/6 

[ ~ = Icacb) 

Matrix elements may be evaluated efficiently and simply on the FTP basis. 
The Gel'f and basis vectors may be converted to and from the FTP basis through 
a fast transformation procedure [24]. 

3. 7 The unitary group Hamiltonian 

3. Z 1 Introdution. There exists a unitary-group Hamiltonian of the form: 

Hv = ~ hgsERs + (1/2) ~ VRsru(ERsErv - 6(S, T)ERu ) (66) 
R S  R S T U  

which reproduces the representation of Hs on VM(N). Here, hRs is the parameter 
for the one-particle interaction and VRsT~ is a parameter for the two-particle 
interaction. The total number of parameters is M 2 + M 4 but they are interrelated 
by the requirements of hermiticity as well as time-reversal, inversion and 
R(3) - S U ( 2 )  symmetries. The parameters comprise the total information con- 
tent of I t  v. The diagonalization of H v in the appropriated irreducible spaces of 
U(M) constitutes a prediction of the spectrum. 

4. Freeon theory 

4.1 Introduction 

In the tensor-product approximation the fermion orbital is taken to be the 
product of two orbitals: an energetically-inert spin orbital, denoted IS), and a 
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freeon orbital, denoted IR), is free of spin. Fermion theory has the inherent 
weakness that it weights equally both the freeon and the spin orbitals and 
obscures the freeon dynamics. In its place we employ the freeon theory [13, 14] 
which exhibits more clearly the freeon dynamics and simplifies the theory since 
spin projection is not required. 

To develop the freeon theory we return to the theory of the symmetric group. 
It is convenient to employ different conventions for the freeon Wigner operators 
than the spin N-particles. The freeon Wigner operators acting on freeon orbitals 
are defined conventionally as: 

e[~R] X~;'v] S' p~rplp-RJ* (67) rs = N! z..,-- L- Jsr 
P 

and the spin Wigner operators acting only on the spin orbitals as: 

-rs"t~R] = N! ~ ( -  1)no°)P°[P]~rR] (68) 

The choice used in Eq. (68) is valid since the complex conjugate of a set of 
irreducible representation matrices gives a set of irreducible representation 
matrices (possibly equivalent or inequivalent) and the parity term ( - 1 )  me) is 
conserved in the multiplication of permutations. 

We construct a complete set of projected freeon and spin N-particle states 
using the Wigner operators: 

] 21~ R(U) t ) oc e ~" 11R(N) ) (69) 
and 

[£~S(N)u)  oc e~.~ , IS(N)) (70) 
respectively. 

Next we apply the antisymmetric projector which we first expand in terms of 
Wigner operators as: 

1 
eElN] = E ~-~ E ~'-[2]rs @ e[alrs (71) 

[4] /L 1 r,s 

erXNll2R R( N)t  ) ® 2 eS (N)u  ) 

= ~, 1 E (e~]][2RR(N)t))®( e~] ~J ]2~S(N)u))  (72) 
r,s 

1 ,,~ 
= 6(t, u)6(2R, 2ee) ~ ~ 12R R(N)r ) ® [ 2 R (S(N))r) (73) 

Therefore the complete set of antisymmetric states have form: 
1 -,~ I [ 1N]R[;'M~[~R)- ~ ~ [,b~R(N)r)®I~RS(N)r ) (74) 

The conjugate representation is graphically equivalent to a representation 
where the number and lengths of the rows in [2R] is equal to the number and 
lengths of the columns in the conjugate representation, [2R], e.g.: 

is conjugate to 

~ is conjugate to ~ (i.e., self-conjugate)  
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I I I I  
is conjugate to [ [ 

For the important case where we have a "spin" formed out of two orbitals only, 
we have: 

YDiS] = iN - S, S] (75) 

where N is the number of particles and S is the spin. Consequently, YD[R] has 
form: 

YD[R] = [W u/2 - s, 128] (76) 

The spin quantum number of the N-particle state is a consequence of this 
conjugacy: 

S = (L1 - Lz)/2 

where L1 >/L2 ~> 0 are the lengths of the two columns of the Gel'fand state such 
that N = L~ + L2. 

Let HF be any operator commuting with the set of permutations and with the 
following property: 

HF ([ R(N) } ® [ S(N) }) = (H'FIR(N) }) ® [ S(N) ) (77) 

Then, 
([ 1 NIR'tZR 1~ t~l I HF[[ 1N]R t,~. ~ t~l) 

= 6(R, R')5(2R, 2~) (2~R'QN) 1 [H~I2R(N ) 1) (78) 

This is the basis of the freeon theory where [2R] supplies the familiar spin label. 
The freeon, unitary-group formulation has been extensively and widely applied 
in the theory of light-atom molecules and their reactions. 

4.2 The Hiickel- Hubbard Hamiltonian 

We use the Hiickel-Hubbard Hamiltonian, Htt as a pedagogical device to 
illustrate many of the principles of FUGF.  The Hfickel-Hubbard Hamiltonian 
can be expressed in terms of site orbitals or molecular orbitals. 

4.2.1 The site-orbital representation 

HH = ( I x l -  1) 2 (Ers + Es,) + xd (79) 
(rs) 

where (rs) denotes nearest neighbors and: 
M 

a = Z ( e ~ -  E.) (80) 
r = l  

is the operator that counts the number of doubly-occupied sites. 

4.2.2 The molecular orbital representation for the linear polyenes 

HH = (Ixl - 1) 2 cos Ekk 
k = l  

M M M M 

+ ½ Z Z ~ ~ Vkl,k2,k3,k4(Ekl,kzEk3,k4-- 6(k2, k3)Eklk4) (81) 
k l = l  k 2 =  1 k 3 = l  k 4 = l  

where 
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(x) Vkl "k2"k3'k4 = 2 M  -~- 2 (7(kl  -t- k 2 + k3 + k4) - ~(k] + k2 + k3 - k4) 

- 7(k, + k2 + k3 + k4) + 7(kl + k2 - k3 - k4) 

- ~ ( k , - k  2 + k  3 + k 4 )  +~/(k 1 - k  2 + k  3 + k 4 )  

+ ~(kl - k2 - k3 + k4) - 7(kl  - k2 - k3 - k4))  

and ~(x) -- 6(0, x modulo  ( 2 M  + 2)). 
The ethylene MO Hamiltonian is: 

--  (Ixl - 1 ) ( E l l  - -  E22) + 4(E,,E,, + Ez2E22 + E,2E2, Hv 

+ E~IE, z + E,2E12 + E=,E~, + E,,E=2 + E~2E,, - 2E,, - 2E=,) 

m 2 

1 -  
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Fig. 1. The Hfickel-Hubbard 
spectrum of ethylene 
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Fig. 2. The Hfickel-Hubbard spectrum of the allyl radical. 
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Fig. 3. The Hfickel-Hubbard 
spectrum of butadiene 

The H/ickel-Hubbard spectra of ethylene, the allyl radical and linear butadi- 
ence are shown in Figs. 1, 2, and 3, respectively. 

5. The FUG formulation of Hartree-Foek theory 

5.1 Introduction 

The FUG single-configuration, HF theory varies freeon orbitals in the highest- 
weight state so as to minimize the ground state energy expectation value. This 
contrasts with the more usual Slater determinantal and second-quantized ap- 
proaches [6, 8, 9]. The first spin free formulation of HF theory is due to Poshusta 
and Kramers [25] who employed the symmetric group. The formulation pre- 
sented here is based on the unitary group formulation, much of which is based 
on earlier work done in collaboration with Dr. Connie Nelin. Since the theory is 
a freeon theory it is a restricted HF theory [26, 27]. We develop in the back- 
ground theory in Sect. 5.3 and the open and closed shell theory in Sect. 5.3. We 
illustrate these theories with Hiickel-Hubbard model of ethylene, the allyl 
radical and linear butadiene. 

5.2 Basic formulation 

5.2.1 Reference state and its orbital transformations. In the FUG formulation of 
HF theory we employ a trial state consisting of the highest weight state of U(M). 
We then vary all orbitals within the M orbital space to minimize the ground state 
energy expectation value. Let [0) be an highest weight state of U(M) with weight 
{Wl, w2, w3 . . . .  , wM }. The highest weight state has properties: 

i f r # s  

<olo> = 1 (82a) 

Io> = Io> (82b) 

and wry>w, thenE~ s ] 0 ) = 0  (82c) 
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The above three properties also characterize an extreme weight state (a Weyl 
reflection of  the highest weight state). Hence the results that follow will hold for 
any extreme weight state as well. 

We will now transform all orbitals within the M orbital space to minimize the 
ground state energy expectation value. We first show that we may restrict the 
transformation to be a unitary group element. Define g to have form: 

M M 

g=Z 2grsErs 
r = l s = l  

with no restriction on the complex numbers Xr~. Following the same techniques 
employed in Sect. 3.3 we have: 

exp(g) = exp 2 g~slrl)(s~ (83) 
i = 1  r = l s = l  

hence each individual electron is transformed by the same nonsingular transfor- 
mation as required for an orbital transformation. Next consider eq0>, where 10) 
is a highest (extreme) weight state. This represents the most general trial vector 
of the desired form. Via Schur decomposition we can decompose e g as: 

where 

and 

e ~ = e - z  e L (84) 

M M 

Z= Z E ZrsErs' Zrs =--Zs~ ( 8 5 )  
r = l s = l  

M M 

L = Z Z LrsErs and Lrs = 0 for w r > vs. ( 8 6 )  
r = l s - - 1  

Using the extreme weight property we have eg]0)=exp(y 'M=l L r Y r ) e - Z l O ) .  
The most general normalized trial vector therefore has form eg]O). 

5.2.2 Extrenurn conditions. We now proceed to the problem of minimizing the 
ground state expectation. The expectation value is given by ( 0 [ ( e - Z ) t H e  z[o)/  
(0[(e-Z)  t e-Z[O). Using unitarity this reduces to (0 eZHe-Z[o ) .  The Baker -  
Campbel l -Hausdorff  formula gives: 

eZHe  Z = H +  . [Z, ~ +N[Z, [Z, ~q] +~[Z,. [Z, [Z, g]]l 

1 
+ ~ [Z, [Z, [Z, [Z, ~q]]] + . . .  (87) 

We denote ZF as any skew-Hermitian operator that is a local  extrenum of 
(0[ eZHe-Z[O) ,  hence we may make definition [ 0 F ) =  e z~]0). To be a local 
extrenum requires (01 e (zF + :)He--(ZF + :) !0)__ to be zero to first order in z, where 
z is of the same form as Z. But e (z~+~)- eZee z', where the group property 
gives e ZFe (ze+:) =e  z" where Z '  is of the same functional form as Z. There- 
fore, the first order variation in (0]e(Zr+")/-/e-(Z~+z)[0) is of the form 

Z Z (OFI e " H e -  '[OF). The extrenum condition is equivalent to requiring the first 
0rder variation of(%[ e~'He-~'[%) in z '  to be zero. 

(OFI[Z',nlIOF)=O (88) 
for all generators (Z')  of U(M). We can employ basis vectors of Z'  as (Er~ - E~r) 
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and i(Er, + Esr) with real coefficients. Hence, the extrenum condition is equiva- 
lent to (0F][Er~, H] [0p) = 0 for all r, s. When Er~ is an excitation (i.e. wr < w,) 
from ]0)F this last equation reduces to (0FIne , ,LOF)= 0 which is the Brillion 
extrenum condition for the Hartree-Fock ground state. 

The vanishing of the first derivative of the variation function is an extrenum 
condition. We generally are interested not in extrenum but in minima. To 
determine if the extrenum is a likely candidate for being a local minima we ask 
if the second order variation in (0nlH[0n) is positive. To obtain the local 
minimization condition we employ the second order term in the Baker-Camp- 
bell-Hausdorff  expansion and test for the condition: 

(0. [[[Z, [Z, H]] [0n )/> 0 for all Z of the form above 

Since Z* = - Z ,  we have 

(0n I[[Z, [Z, 10n ) = (0n I[[Z*, 10o ) = (0n I[Z*, In, Zq] 10n ) 
For this reason the symmetric commutator ([[Z*, /-/], Z] +[Z*, [H, Z]])/2 = 
[Z*, H, Z] is normally employed in formulas for the second variations. The 
necessary matrix elements for computation of this quantity are given in Ap- 
pendix B for the freeon highest (extreme) weight state. We also must note that 
it is possible that more than one local minima may exist in a problem, 
presumably we should take the Hart ree-Fock state as the lowest energy state 
among these local minima. 

The quantity (01 eZHe  z[0) is highly nonlinear in the parameters Z ;  
hence, generally cannot be minimized in one analytic step. Many numerical 
approaches could be used i.e., steepest descent, conjugate gradients, etc. How- 
ever, most methods employed in chemistry are based on linear approximations of 
the extrenum condition in the form of a fixed point iteration (self-consistency) or 
a Newton-Cotes procedure employing the explicit form of the second order 
variations mentioned above. 

In any case, it is convenient to define a Fock operator F n such that F~ = F n 
and: 

M M 

Fn = ~ ~ F~sErs (89) 
R = I  S = I  

which we require to have property: 

(0n I[Ers, H] 10n ) = (0n ][E~s, Fn] 10n ) (90) 

In other words we require F~ to have the same first order variation in (0 n I L 10n) 
as (On IHI0n) does. The motivation for the form of Eq. (89)is that F n may be 
exactly diagonalized by diagonalizing the M x M matrix with elements F~. It is 
important to note that there are actually fewer independent equations than 
unknowns F~. Specifically, for cases such that Wr = W~ Eq. (90) gives 0 = 0. As 
a result the terms Fr~ for w~ = w~ are not determined by the above equations [6]. 
In a group theoretical language the ground state is invariant under the direct 
product group, U(Mo) ® U(M~) ® U(M2) . .  • ® U(M2) ® ' "  • where U(M~) de- 
notes the set of unitary transformations within the set of orbitals with common 
weight w. 

To give an alternate motivation for the definition of F we consider the vector 
HI 0n ). We wish to find an operator F, of form of Eq. (89) and F~ -- Fn such that 
the vector ( H - F n ) [ 0 n )  is as small as possible. Specifically, we minimize 
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(0. ] ( H -  F.) 2 0~ ) over the possible values FT~. The resulting extrenum condi- 
tions give (0, ( H - F , )  0 , ) = 0 ,  (0,1[(n-L),E, AI0 ) =0. 

Therefore, the resulting Fock operator also minimizes the norm of the 
residual vector ( H -  F,)10, ), representing the "best" approximation to H for a 
given fixed orbital basis. It is therefore reasonable to assume that an eigenstate 
to F, is an approximate eigenstate of H. Hence, we will be choosing new orbitals 
where F~ is (block) diagonal. 

This gives the basis for the following classical algorithm originally presented 
by Roothaan [4, 5]. We compute the Hartree-Fock orbitals by the self-consistent 
method consisting of the following steps: 

1. Choose a set of orbitals, V:{lr)}. 

2. Evaluate the coefficients in the Fock operator F. 

3. Diagonalize F in the primary orbital basis to obtain a second orbital basis 
{[r')}. 

4. Replace old orbitals {Jr)}. with new orbitals {Jr')}. 

5. Repeat steps 1 thru 4 until the Fock operator does not change; i.e., until they 
are self-consistent. 

Since the Hartree-Fock theory is a variation theory the Hartree Fock 
ground state energy is greater than or equal to the exact ground-state energy. 
The difference between the two: 

E~ = E(HF) - E(CI) 

is called the correlation energy or correlation error. The term correlation error is 
used since the Hartree-Fock theory is a mean-field theory. 

5.3 FUG Hartree-Fock equations 

To implement the extrenum conditions we will require the expectation values of 
the various operators, H, [H, Era], F and [F, Er~]. While there are many methods 
of evaluating these quantities, we will employ the simplest method applicable to 
an extreme weight state of U(M). 

5.3.1 Freeon Hartree Fock energy (ground state expectation value). For the 
typical two-body Hamiltonian we have: 

H = H o +  V 

where 
M M 

Ho= ~ ~ h~,Ers (91) 
r - - l s - - I  

and 
M M M M 

1 V=~ ~ ~, ~ ~" VrstuErstu (92) 
r = l s = l t = l u = l  

where the coefficients obey hrs = hs*, V~stu = Vtu~ = Vut~r.* 
We combine Eqs. (128) and (135) of Appendix A to yield: 

M M M M M 

<01HI0> = Z w.h,r Z Z r,r.w.w, _1 Z Z rrttr min(w,, w,) (93) 
r = l  r = l t - - 1  r - - l t ~ l  
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5.3.2 Freeon Hartree orbital energies. Equation (93) was derived assuming that 
for each r, s that w~ - ws is an integer. Nevertheless, we can extend the equation 
to be defined over real values of weights w~, which will allow us to (formally) 
differentiate the energy in respect to the weights w~. The "physical" interpreta- 
tion of such an operation is analogous to the operation of adding an infinitesimal 
charge at a position to measure the electric field, i.e., this represents the effective 
field seen by the orbital " r" .  Employing: 

8(OIHIO)aw~ - h r r +  t ~'= 1 V~"wt-(w~>~ ~t V~tt~+ 1 ~,t Vr.r) (94) 

w t = w w t = w r 
We will later see that this choice is consistent with an orbital energy definition of 
the corresponding Hartree-Fock orbital. 

5.3.3 Freeon Hartree-Fock operator. To find the appropriate Fock operator F. 
we need to evaluate Eq. (90) for form of Eq. (89). We start by evaluating the 
required commutators. For any p and h we have: 

So 

Similarly using: 

we have 

M M 

= Z Z hrs(C~rhEps--(~psErh) 
r = l s = l  

M M 

= Z h~se.s- Z h~pe~h 
s = l  r = l  

(O[[Gh, ~o1 I0) = h~,(Wp - w~) 

[Gh, Ks,u] = [G~, Ersg~ - GE,~] 

- G6h, Gu + G G ~ K h  

[G~, Vl = ~, 
r=ls=lt=lu=l 

1 (  ~= ~ ~ mhstuEpstu ~ ~ ~ VrptuErhtu 
s l t = l u = l  r=lt=iu=l 
M M M M M ~ ) 

+ 2 2 Z mrshuErsp u -  Z E mrstp Ersth 
r=ls=lu=l r=ls=It=l 

(95) 

(96) 

(97) 

(98) 

after relabeling sums and noting Vr.,u = Vt.rs and Ers,u = E, urs we have: 
M M M M M M 

[e.h,~= E Z E vh,,ue.~,.-E Z Z %,.erh,. 
s=tt=lu=l r--lt l u - - I  

M M" M M 
= E 2 Z 2 (Vhstu(~r,P - rrptuOs,h)Erstu 

r=ls=lt=lu=l 
(99) 
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Defining [Eph, V] = K  z, and Krs~, = (Vhstu~rp- Vrptu(~sh) we can substitute into 
Eq. (135) from Appendix A to evaluate (0'IK2[0 }. Noting: 

K~r. = (Vhrtt(~r,p - -  Vrptt(~r,h) and K~.r = (Vht trbr ,  p - -  Vrptr(~t,h) 
M M 

1 1 (0l[Eph, V]IO} ~ Z VhpttWpWt--2 2 VhpttWhWtVr, tu 
t = l  t = l  

M M 

-½ ~ Vh.pmin(wp, W~)+ 1 ~ Vrphrmin(Wr, Wh) (100) 
t = l  r = l  

Employing Vrs~u = Vt.,r. and minor algebra we have: 
M M 

(0l[Eph, V] 10) = (w. - wh) E v~..w~ - Z 
1=1 t = l  

Vh,p(min(wp, wt) - min(wt, wh)) 

(101) 

and 

(1/2)(O[[Eph + Ehp, I-1] 10) = 0 (105) 

We (partially) define a Hermitian Fock operator F = SFhpEhp by the property: 

(O[[Eph , H] 105 = (0l[Eph, F] 10) (106) 

Since, (O[[Eph, F] [0} = Fhp(Wp --wh) we must have in the case Wp ¢ w h that: 
M M 

Fhp = hhp + 2 VhpttWt - -  (Wp - -  Wh) 1 ~ V m t p ( m i n ( w p ,  w t )  - -  m i n ( w t ,  w h ) )  
t = l  t = l  

(107) 

For Wp = Wh we have (0][Eph, F] ]0} = @[[Eph, H] [0} = 0 a-priori, and the corre- 
sponding value Fhp is not determined by the relation above. 

Again we can formally extend the equations to real values of wr. Taking the 
limit wh tending to Wp gives a definition of Fhp when h C p and Wh = Wp. 
Specifically in this case: 

Fh,=hhp + Z Vhp, Wt-- ~ '  Vhttp -~1  Z Vhttp (108) 
t = t  w> =w h t w t w t w t = Wp = w h 

Therefore, 
M 

(Ol[Eph, H][O ) = ( w ,  - -  Wh)hhp "Jf-(Wp - -  Wh) E Vhp t tWt 
t = l  

M 
-- ~ Vmtp(min(wp, wt) - min(w,, Wh)) (102) 

t = l  

Often we have real parameters hrs and Vrs.,. We note that since: 

(Ol[Eph, H] 10)* = -(01[eh,, t~ 10) (lO3) 
we have in the case of real parameters that: 

M 

(1/2)(O[[Eph -- Ehp, H] lO) = (w, - w~)h~, + (Wp - -  Wh) 2 Vhp ttW` 
t = l  

M 

- -  ~ Vmtp(min(wp, wt) -- min(wt, Wh)) (104) 
t = l  
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Taking: 

F r r = h r r +  g r r t t W t -  E gr t t r 'q -2  E grttr ( 1 0 9 )  

t = l  w r w t t  w wt tWr  

is totally consistent with derivative of the ground state energy in respect to wr 
and is invariant under unitary orbital transformations within the same weight. 
We emphasize that formally any choice may be made for Fph when wp = w h. 
Alternate choices would be to use forward and backward differences instead of  
a derivative (i.e., orbital energies representing electron affinities and ionizations, 
respectively). 

5.3.4 Density matrices and implementation of Hartree-Fock equations. The sums 
a written in Eq. (93) as well as other equations derived so far are inefficient for 
the purpose of computation. For instance we can employ symmetries Vrrt, = Vttrr 
and Vtrrt = Vrttr. Furthermore, since it is likely that only a few distinct values of 
w are possible in a given problem (i.e., for typical atomic and molecular 
problems w = 0, 1, 2 only) we will explicitly sum over possible values of  wr and 
wt, giving a more complicated but efficient form of  Eq. (93). 

M 

( 0 ] H [ 0 )  = Z wrhrr "~ I Z ( W 2 -  w) Z Vrrrr -~- E E ( W2Vrrt` - -  WVrt tr)  
r = l  w r w ~ < t  

Wr=W Wr=W 
Wr= W 

+ Z Z Z w(w'Vr~,- Vrtt~ ) (110) 
w< w" r t 

w r = w w t = w" 

where ~ ~ is a sum over all orbitals r with weight w. 
Wr= W 

In practice, the Vrstu are usually not directly computed on the current 
estimate of  the Har t r ee -Fock  orbitals but on the most convenient orbital basis 
for computation (for instance atomic orbitals). Let {IxA )} denote an alternate 
orthonormal basis for the orbitals. Let ~xy and ~y~w denote the corresponding 
parameters of the Hamiltonian. Then: 

M M 

hr~= E E ~xy(S[XA)(Yalr) ( l l l a )  
x = l y = l  

M M M M 

V r r t t =  Z Z E Z V x y ~ q ( r I x A ) ( Y A I r ) ( t I Z A ) ( q A [  t )  ( l l l b )  
x - - l y - - l z = l q = l  

M M M M 

V~tt~ = ~ ~ ~ ~ ~xy~w(r[xA)(yA[t)(t[zA)(qA[r) ( l l l c )  
x = l y = l z = l q = l  

Defining first-order density matrix elements as [28]: 

we have: 

o(w)~x= E (rlxA)(YAlr) and Qyx=Ewo(W)yx (112) 
r w 

Wr= w 

M M M M M M 

(01HI0)  = Y~ Y, Qyx~xy+½ Y~ Y~ Y~ Y~ %zw 
x = l t = l  x = l y = l z = l q = l  

x Oy~Oq~ - min(w, w )e(W)q~O(w )y~ 
w w" 

(113) 



F r e e o n  u n i t a r y  g r o u p  f o r m u l a t i o n  o f  H a r t r e e - F o c k  t h e o r y  203 

From a theoretical standpoint, the ground state energy depends only on the 
density matrices Q(w) for w/> 1 and the values of Vxyzq. The density matrices 
therefore may be considered as the unknown rather than the orbitals and the 
equations may be solved for the density matrices only. The same comments 
obviously apply to the derivatives of the ground state energy. Such an approach 
was originally formulated by L6wdin [2] for the fermion case and developed 
further by later authors [9]. 

From a practical standpoint, each density matrix requires order of M 2 
storage and M 3 computational cost. For a system with few distinct values of w 
the computation time of the Hartree-Fock energy is of order M 4. In contrast, 
the direct transformation of the second degree Hamiltonian itself requires order 
of M 5 computation time and M 4 storage. 

Similarly, the elemements of the Fock matrix on the basis {[XA )} may be 
calculated from Eq. (107) and the density matrices via: 

M M 

~xY=~xY "Jff 2 2 ~ q z % z q - - ~ x Y  (114) 
z = l q = l  

where the matrix elements Nxy are calculated in the following steps. 
First the quantities: 

M M 

~qxy(W) = ~ ~ Oqz(W)~xqzy (115) 
z = l q = l  

are calculated defining matrices [~(w)]. The matrices are transformed back to the 
basis representing the present estimate of the Fock orbitals via: 

[a(w)] = [S]*[(¢(w)][S] (116) 

where [S] is the unitary overlap matrix between the two orbital basis. Matrix 
elements: 

Dhp = (Wp -- wh) -l ~ (min(wp, w) -- min(w, Wh))Ghp(W) (117) 
w 

are calculated and the corresponding matrix transformed back to give: 

[9] = [S][D][S]* (118) 

Similar techniques may be used on the second order variation and Eq. (144). 

5.4 Hartree Fock theory for the closed-shell Gel'fand reference state 

5.4.1 The general equations. For a U(M) extreme weight state formed out of N 
boxes formed into w columns each length N/w Eq. (109) reduces to: 

N/w N/w N/w 
1 <01HI0>=w Z hrr-~-2 E Z (W2Vrrtt-WVrttr) (119) 

r = I  r = l t = l  

For a two column freeon singlet state w = 2. 
N/2 N/2 N/2 

{0[HI0) = 2  ~ hrr + ~ ~ (2grrtt- Vrttr ) (120) 
r = l  r = l t = l  

Similarly: 
N/2 N/2 

Fhp = hhp -]- W E Vhptt -- 2 Vhttp ( 1 2 1 )  
t = l  t = l  
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5.4.2 Ethylene. For ethylene the HF orbitals are completely determined by 
symmetry; i.e.: 

IHF) = V-~- ~ 

For an even linear polyene with half filling (M = N) in a singlet state, the 
Hart ree-Fock energy employing molecular orbitals is given by: 

_ x 1) lrc 1 (122) EHartree F°ck=4-+2(Ixl- (sin 2 ( M ÷  1)) 

In this case, the orbitals are minima for 0 ~< x < 1. But we emphasize that in 
general the orbitals are rigourously extremum, but need not be minima. 

For ethylene (M = N = 2): 

x 
E H a r t r e  e Fock = ~ ' - ~ - 2 ( I X ] -  1)  

The exact, Hartree Fock and correlation energies for ethylene are plotted in 
Fig. 4. 

For linear butadiene (M = N = 4): 

EHartree Fock : X -t- 4.472(1x I - 1 )  

The exact, Hart ree-Fock and correlation energies for butadiene are plotted in 
Fig. 5. 

In the limit of large M, EHartree-Fock is approximately: 

M 4M(Ix I - 1) 
- - - x  + (123) E H a r t r e e - F ° c k -  4 rc 

5.5 Hartree-Fock theory for the open shell (S > O) Gel'fand reference state 

5.5.1 The general equations. For a two column freeon singlet state w = 2, 1, 0. 
Denote double occupied orbitals by d and d', singles by s and s'  and unoccupied 
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Fig. 4. Correlation energy for neutral 
ethylene 
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orbitals by u and u'. Equation (109) reduces to: 

(0[HI0) 2 Z haa + ~ h** + ½ Z (aVada.a,- 2Vaa,a,d) 
d s dd"  

+ l ~ (Vsss,~,- V~s,s,~) + ~ (2Vs~aa- V~das) (124) 
ss" d s  

5.5.2 The allyl radical. For an odd linear polyene with half filling (N = M) in a 
doublet state, the Hartree-Fock energy employing molecular orbitals is given 
by: 

1 
EHart . . . .  Fock - -Q  M 2(M+l))X+2(lx[-1)(cotan(2(M+l))-l) (125)  

We emphasize that the orbitals are rigourously extrenum, but need not be 
minima. 

In the limit of large M, Enact . . . .  Fock is approximately: 

M aM(Ix  [ - 1) 
gHartree Fock '~ ~ -  X -{ - 

O h 

LU 

_2 ¸ 

01, 0:2 01, oJ4 01, 016 017 018 019 
X 

Fig. 6. Correlation energy for the 
allyl radical 
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For allyl doublet state (N = M = 3) we have: 

E H a r t r e e  Fock = 5X/8 -4- 2,/2(1x I - 1) 

The exact, Har t ree-Fock and correlation energies for allyl are shown in Fig. 6. 

6. Conclusion 

We have presented the freeon unitary group formulation of nonrelativistic 
quantum chemistry and have applied it to Hart ree-Fock theory. 

Appendix A: One and two bodied matrix elements on extreme weight states 

While there are many methods of calculating matrix elements on unitary group 
bases, we will employ the simplest self-contained method applicable to this 
special case. 

A. I Mat r i x  elements o f  operators o f  degree one in the generators 

Let 10> be an extreme weight state of U ( M )  with weight {wl, w2, w 3 , . . . ,  WM}- 
We will be calculating: 

where 

<OIK IO> 

M M 

K 1 = ~, ~ K~,E~, (126) 
r = l s = l  

and ]0) is an extreme weight. 
But, by the definition of extreme weight state (82) and (0]E~sl0)*= 

<01Esrl0> we have: 

<OlErs IO> = (~r,sWr ( 1 2 7 )  

Hence, 
M 

<01Er,10>= L KrrW,. (128) 
r = l  

A.2  Mat r i x  elements o f  symmetric  operators o f  degree two in the generators 

We define the operator: 

Erstu =- ErsEt, - 6t~Er~ = Et~Er~ - 6r~Et~ = Et~rs (129) 

The equality used in the definition above follows from [Ers, Etu ] = 
a , ~ E r ,  - a r , ,E ,~ .  

We will be calculating: 

<ol&lo) 
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where 
M M M M 

~_ 1 K2 ~ E E E Z Xr~,~ers,~ (13o) 
r = l  s = l  t = l  u = l  

and [0) is an extreme weight. 
We will require the matrix elements (ol~rs,ulO>. To evaluate this matrix 

element we break it into three cases. 
I f  t # u and wt ~> w~ then: 

(01Er~,u 10) = (OI(ErsE, ~ - (~tseru) ]0> 

= 0 - 6,~ (OIEr, 10> = - ~ts~ruWu (131a) 

I f  t # u and wt <<. w, then: 

<Olgrstu[O > = <O[(Etugrs --  arugts ) 10>  

= 0 --  ~ru <OlEts 10> = --~ru~tsWt (131b) 

I f  t = u then: 

= (~rsWrWt --  (~tsfrtWr = 6rs(WrWt --  (~rtWr) (131c) 

The cases wt ~ wu and wt <. w. are combined into one expression giving: 

if t # u then (O[Erstu I0) = --6r.fts min(w., wt) (132) 

which can be written as one expression: 

a n d  <OIErstu[O > =(~rsOtu(WrW t - -~r tWr)  "3l-((~tu --  1)(~ru(~ts min(w., w,) 

= (~rs(~tuWrWt- (~ru~ts s i n ( % ,  w,) (133) 

Note: (0[Erstu[0)= 0 unless r, s, t, u are all orbitals. 
M M M M 

<0lK210>=½ 2 E 2 2 Krst-(0ler,,-]0> 
r = l s = l t = l u = l  

M M M M 
= 1 E 2 E E Krstu((~rs(~tuWrWt --  (~ru(~ts m i n ( w ~ ,  w , ) )  ( 1 3 4 )  

r = l s = l  t=I  u=l  

Which simplifies into: 
M M M M 

(0IK210)=½ £ 2 KrrttWrWt-½ E E Krttrmin(wr, wt) (135) 
r = l  t = l  r ~ l  t = l  

Appendix B: Stability matrix elements 

We evaluate [Ep;h,, [Eph, Ho]] as follows. [Eph, Ho] was evaluated in Eq. (95); 
therefore we have: 

M M 

[E~,~,, [Ep~, Ho]] = Y~ h~[E~,~,, EpA - S h~[E~,~, ErA 
s = l  r = l  

M M 

= •ph" E hhsEp "s - hhp'Eph'Eph"- hh'pEp'h q- ~p'h E hrpErh" (95) 
s = l  r = l  
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and 

Noting: 

grr n = 2(Vh.rtt(ph)Or. o, -- Vrp.tt(ph)6r.h. ) 

Krttr = 2(Vh,ttr(ph)~)r, p, -- V~p,tr(ph)Ot,h. ) 

we may employ Eq. (135) to give 
M 

(O[K2[O> = E (Vh'p'tt(ph)wp'-Vh'p'tt(ph)Wh')Wt 
t= l  

M M 
- Y', Vh,.p,(ph) min(wp., w,) + Z Vrp.h,~(ph) min(w~, Wh,) (139) 

t = l  r = l  

using Vrs,.(ph) = Vt.r~(ph) we have: 
M 

(OlK2]O> = Y' [(Wp.- Wh.)Vh.p.tt(ph ) -- (min(wp. w,) -- min(wh., wt))Vh.ttp.(ph)] 
t = l  

(140) 
substituting: 

Vh,p,tt(ph) = [(Vhp,ttOh, p -- Vh,pt t~,h ) -4- (Vhth,p.6t, p --  Vtph,p,(~t,h) ] (141) 

and 

Vh'ttp'(ph) = [(Vhttp'6h',p --  Vh,ptp,(~t,h) ~- (Vhp, h,t(~t,p --  Vtph,t(~p,h) ] (142) 

(OlK2lO) = I6h'.p C ~= l (Wp" -- Wh')WtVhp't, -- (min(Wp', Wt) -- min(wh., Wt))Vmtp.) 

--6p',h(t~=l(Wp'--Wh')wtVh'ptt--(min(Wp',Wt)--min(wh.,Wt))Vh.,tp) 

+ (Wp.- Wh.)Wp Vhph'p'- (min(wp., Wp) -- min(wh., Wp))Vhp.h.p 

-- ((Wp. - Wh.)Wh Vhph'p" - (min(wp., Wh) --min(wh. , wh))Vhp.h'p)] (143) 
A 

From Eq. (96) we have: 

(0l[Epw, [Eph, Ho]] [0> = 6ph, hhp,(Wp,- Wp) + 6p,hhh,p(Wh,- Wh) (136) 

Similarly, by Eq. (99): 
M M M M 

[Eph ' ~2] : ~ ~ 2 Z (Vhstu(~r,p- Vrptu(~s,h)Erstu 
r = l  s = l  t = l  u = l  

Defining V,.st.(ph) = [(Vh~t.6r,p - Vrpt.gs,h) + (Vh.rs6t,p -- V, prs6u,h)] and noting 
V~tu(ph) = Vt.rs(ph) we have by Eq. (99) again that: 

M M M M 

[Ep,h,,[Eph , V]] = Z ~, Z Z (Vh'stu(ph)6r,p'--Vrp'tu(ph)6s,h')Erstu (137) 
r = l s = l t = l u = l  

Defining K2 = [Ep,h., [Eph, V]] and: 

Kr~t. = 2(Vh,~tu(ph)6~,p. -- V~p,t.(ph)6~,h. ) (138) 
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T h e r e f o r e :  

(01Ep,h., [E.h, VII I 0) = ~ . .  ~ ((w..- w~, )w ,  Vhp..  - -  (rnin(wp., w,) 
t ~ l  

M 

- min(wh.,  w,))Vh.p.) -- 6p',h ~ ((Wp, -- Wh')Wt Vh.p. 
t = l  

- (min(wp.,  wt) - min(wh., wt))Vh..p) 

+ (Wp,-  wh,)(wp -- wh)Vhph'p"- (min(wp.,  wp) 

--  min(wp.,  wh) -- min(wh,,  Wp) + min(wh.,  wh)) Vhp.h,p / 

(144) 
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